Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.526
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 107: 104425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552756

RESUMO

The goal of the study was to analyse the concentrations of chemical elements (Fe, Ni, As, Cd, Pb, Hg, Cr, Zn) which are important for the determination of environmental toxins (e.g. resulting from smoking, exposure to harmful agents at work) in Polish patients with prostate cancer. The study covered 66 patients with diagnosed prostate cancer and 64 healthy volunteers over 50 years old. The analysis of the concentrations of selected chemical elements in whole blood was performed using inductively coupled plasma mass spectrometry (ICP-MS). In their blood, the patients with cancer had a significantly higher concentration of only one of the examined elements: arsenic. Additionally, the study group had lower concentrations of chromium, zinc, but also cadmium and lead, which are commonly regarded as carcinogenic. Taking into consideration the control group of healthy subjects of this study, we can assume that the subjects with prostate cancer were exposed to higher levels of arsenic, and that exposure to this element may be associated with an increased risk of cancer.


Assuntos
Arsênio , Neoplasias da Próstata , Oligoelementos , Masculino , Humanos , Pessoa de Meia-Idade , Oligoelementos/análise , Arsênio/análise , Polônia , Zinco/análise , Cádmio/análise , Neoplasias da Próstata/epidemiologia
2.
Chemosphere ; 354: 141713, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490613

RESUMO

Historical pesticide use in agriculture and trace metal accumulation have long term impact on soil, sediment, and water quality. This research quantifies legacy and current-use pesticides and trace metals, assessing their occurrence and toxicological implications on a watershed scale in the Sogamoso River basin, tributary of the Magdalena River in Colombia. Organochlorine pesticides (22), organophosphates (7), and azole fungicides (5), as well as trace metals cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) were analyzed in croplands and along the river. Toxic units (TU) and hazard quotients (HQ) were calculated to assess the mixture toxicity. Organochlorines were detected in 84% of soils, 100% of sediments, and 80% of water samples. Organophosphates were found in 100% of soil and sediment samples, as well as in 70% of water samples. Azole fungicides were present in 79% of soils, 60% of sediments, and in 10% of water samples. Total pesticide concentrations ranged from 214.2 to 8497.7 µg/kg in soils, 569.6-12768.2 µg/kg in sediments, and 0.2-4.1 µg/L in water. In addition, the use of partition coefficient (Kd) and organic carbon fraction (foc) allowed the distribution analysis for most of the pesticides in sediments, suspended particulate matter (SPM), and water systems, but not for soils. Concentrations of trace metals Cu, Zn, Pb, and Zn exceeded international quality guidelines for agricultural soils in 16% of the samples. Furthermore, Cu and Zn concentrations exceeded sediment quality guidelines in 50 and 90% of the samples, respectively. These findings demonstrate the broad distribution of complex mixtures of trace metals, legacy organochlorines, and current-use pesticides across the basin, indicating that conventional agriculture is a significant source of diffuse pollution. Sustainable agricultural practices are needed to mitigate adverse impacts on ecosystems and human health.


Assuntos
Fungicidas Industriais , Metais Pesados , Praguicidas , Oligoelementos , Humanos , Solo , Metais Pesados/análise , Praguicidas/análise , Ecossistema , Rios , Fungicidas Industriais/análise , Colômbia , Chumbo/análise , Monitoramento Ambiental , Oligoelementos/análise , Agricultura , Zinco/análise , Azóis/análise , Organofosfatos , Sedimentos Geológicos , Medição de Risco , China
3.
Sci Rep ; 14(1): 5662, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454098

RESUMO

The monitoring of essential and toxic elements in patients with Opioid Use Disorder (OUD) undergoing methadone treatment (MT) is important, and there is limited previous research on the urinary levels of these elements in MT patients. Therefore, the present study aimed to analyze certain elements in the context of methadone treatment compared to a healthy group. In this study, patients with opioid use disorder undergoing MT (n = 67) were compared with a healthy group of companions (n = 62) in terms of urinary concentrations of some essential elements (selenium (Se), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), calcium (Ca)) and toxic elements (lead (Pb), cadmium (Cd), arsenic (As), and chromium (Cr)). Urine samples were prepared using the acid digestion method with a mixture of nitric acid and perchloric acid and assessed using the ICP-MS method. Our results showed that the two groups had no significant differences in terms of gender, education level, occupation, and smoking status. Urinary concentrations of Se, Cu, and Fe levels were significantly lower in the MT group compared to the healthy subjects. However, the concentrations of Pb, Cd, As, Mn, Cr, and Ca in the MT group were higher than in the healthy group (p < 0.05). No significant difference was established between the levels of Zn in the two groups (p = 0.232). The results of regression analysis revealed that the differences between the concentration levels of all metals (except Zn) between two groups were still remained significant after adjusting for all variables (p < 0.05). The data obtained in the current study showed lower urinary concentrations of some essential elements and higher levels of some toxic elements in the MT group compared to the healthy subjects. These findings should be incorporated into harm-reduction interventions.


Assuntos
Arsênio , Transtornos Relacionados ao Uso de Opioides , Selênio , Oligoelementos , Humanos , Oligoelementos/análise , Cádmio/análise , Irã (Geográfico) , Chumbo/análise , Cobre/análise , Zinco/análise , Manganês/análise , Selênio/análise , Cromo/análise , Arsênio/análise , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Metadona/uso terapêutico
4.
Environ Sci Pollut Res Int ; 31(11): 16413-16425, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38315335

RESUMO

Atmospheric cadmium (Cd) deposition contributes to the accumulation of Cd in the soil-plant system. Sedum plumbizincicola is a Cd and Zn hyperaccumulator commonly used for the phytoremediation of Cd-contaminated soil. However, studies on the effects of atmospheric Cd deposition on the accumulation of Cd and physiological response in S. plumbizincicola are still limited. A Cd solution spraying pot experiment was conducted with S. plumbizincicola at three atmospheric Cd deposition concentrations (4, 8, and 12 mg/L). Each Cd concentration levels was divided into two groups, non-mulching (foliar-root uptake) and mulching (foliar uptake). The soil type used in the experiment was reddish clayey soil collected from a farmland. The results showed that compared with the non-mulching control, the fresh weight of S. plumbizincicola in non-mulching with high atmospheric Cd deposition (12 mg/L) increased by 11.35%. Compared with those in the control group, the malondialdehyde (MDA) content in the non-mulching and mulching S. plumbizincicola groups increased by 0.88-11.06 nmol/L and 0.96-1.32 nmol/L, respectively. Compared with those in the non-Cd-treated control group, the shoot Cd content in the mulching group significantly increased by 11.09-180.51 mg/kg. Under high Cd depositions, the Cd in S. plumbizincicola mainly originated from the air and was stored in the shoots (39.7-158.5%). These findings highlight that the physiological response and Cd accumulation of S. plumbizincicola were mainly affected by high Cd deposition and suggest that atmospheric Cd could directly be absorbed by S. plumbizincicola. The effect of atmospheric deposition on S. plumbizincicola cannot be ignored.


Assuntos
Sedum , Poluentes do Solo , Cádmio/análise , Zinco/análise , Poluentes do Solo/análise , Solo , Biodegradação Ambiental
5.
Environ Pollut ; 346: 123618, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382727

RESUMO

Lead-zinc (Pb-Zn) tailings ponds carry the risk of multiple heavy metals (HMs) contamination and pile destabilization. This poses requirements for in-situ applicable, low-distribution, and effective stabilization/solidification (S/S) methods. For this, the novel enzymatically induced phosphate precipitation (EIPP) method was implemented in this study. Its mechanism and performance on stabilization of composite Pb, Zn, and cadmium (Cd) in tailings were explored and evaluated under typical erosion conditions for the first time. Results show that the EIPP stabilized HMs by chemically transforming the unstable carbonate-bound HMs to stable phosphate precipitates and by physically encapsulating tailings particles with newberyite precipitates. The stabilization effect on the three HMs was ranked as Pb > Zn > Cd. Comparing magnesium resources for the EIPP reactants, the EIPP utilizing Mg(CH3COO)2 was more effective at decontamination than MgCl2 because its special pre-activation and re-precipitation function enhanced the chemical transformation function of EIPP. The EIPP stabilization was confirmed to reduce simulated acid rain-leachable and bio-extractive HMs by about 90% and 60%, respectively. Under the prolonged acid attack, treated HMs were ultimately leached through the dissolution mechanism. Zn exhibited significant instability in highly acidic conditions (pH = 2.5-3.5), where its cumulative leaching toxicity after long-term dissolution warrants attention. Overall, EIPP presents a novel and effective strategy for on-site mitigation of composite HMs pollution.


Assuntos
Metais Pesados , Oligopeptídeos , Poluentes do Solo , Zinco/análise , Cádmio/análise , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Fosfatos , Solo
6.
Food Chem ; 442: 138500, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252987

RESUMO

In this study, for the first time, a selective electrochemical sensor by glassy carbon electrode (GCE) modified with the covalent organic framework (COF) and carbon black (CB) was introduced and applied to simultaneous sensing of Zn2+, Cd2+, Pb2+, and Hg2+ via differential pulse anodic stripping voltammetry (DPASV). The COF is supplied through a condensation reaction between melamine and trimesic acid. The COF and CB, which are used to modify the GCE surface, increase electrochemical activity. The linearity to determine ions was achieved as Zn2+: 0.009-1100 nM, Cd2+: 0.005-1100 nM, Pb2+: 0.003-1100 nM, and Hg2+: 0.001-1100 nM. Besides, the detection limits for Zn2+, Cd2+, Pb2+, and Hg2+ have obtained 0.003, 0.002, 0.001 and 0.0003 nM, respectively. The CB-COF/GCE was applied to simultaneously measure the ions in food samples. For validation, atomic absorption spectrometry (AAS) was applied to measure the amount of target metal ions as a standard method in real samples.


Assuntos
Mercúrio , Estruturas Metalorgânicas , Metais Pesados , Cádmio/análise , Estruturas Metalorgânicas/análise , Chumbo , Fuligem , Metais Pesados/análise , Mercúrio/análise , Eletrodos , Carbono/química , Zinco/análise , Íons
7.
Environ Pollut ; 341: 123019, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38008255

RESUMO

Bone biochar (BC) has a high capacity for the immobilization of potentially toxic elements (PTEs); however, its effect on dendroremediation efficiency remains unclear. Therefore, this study aimed to determine the effects of various concentrations (0, 0.5, 1, and 2 wt%) of BC, ball-milled BC (MBC), and Fe-Mn oxide-modified BC (FMBC) on soil properties, plant growth, and metal accumulation in Salix jiangsuensis "172" (SJ-172) grown in cadmium (Cd)- and zinc (Zn)-contaminated soil. BC and MBC promoted the photosynthetic rate, mineral element absorption, and plant growth of SJ-172, whereas FMBC inhibited the growth of SJ-172. Different biochars greatly influenced the concentrations of Cd and Zn in tissues of SJ-172. BC and MBC elevated the Cd levels, whereas FMBC decreased the Cd content in the leaves, stems, and cuttings of SJ-172. Unlikely, BC, MBC and FMBC show no evident change to the Zn concentration in the aboveground tissues of SJ-172, while decreased root Cd and Zn content compared with the control. MBC, at a 2.0% application rate, significantly increased the translocation factors of Cd (55.0%) and Zn (40.87%), whereas BC and FMBC demonstrated no significant effects compared with the control (P > 0.05). Moreover, 2.0% BC and MBC increased Cd and Zn accumulation in SJ-172 by 28.40 and 41.14, and 25.89 and 36.16%, respectively, whereas 2.0% FMBC reduced Cd and Zn accumulation by 53.20% and 13.18 %, respectively, compared with the control. The phytoremediation potential of SJ-172 for Cd- and Zn-contaminated soils was enhanced by MBC and BC, whereas it was lowered by FMBC compared to the control. These results provide novel insights for the application of fast-growing trees assisted by biochar amendments in the dendroremediation of severely PTEs-contaminated soil.


Assuntos
Salix , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Zinco/toxicidade , Zinco/análise , Carvão Vegetal , Compostos Orgânicos , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
8.
Environ Toxicol Pharmacol ; 105: 104326, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000686

RESUMO

Metal discharges in aquatic ecosystems are of concern since they affect different trophic levels, altering the functioning of the aquatic food chain. The metals can interact among them and with other pollutants, resulting in complex mixtures whose effects on biota are unpredictable. The impacts of copper (Cu) and cadmium (Cd), isolated and combined, on the freshwater copepod Notodiaptomus iheringi were assessed in acute and sub-chronic exposures. Species sensitivity distribution (SSD) curves were constructed for both metals. In the acute tests antagonism was observed in mortality, while in sub-chronic, mortality was not affected; however, the eggs produced and percentage of viable eggs were significantly altered. Our data suggest that egg production can be a detoxification route in N. iheringi under Cu and mixture exposure. From the SSD curves, N. iheringi was the most sensitive Brazilian species for Cu and the second most sensitive for Cd.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Cádmio/análise , Cobre/toxicidade , Cobre/análise , Zinco/análise , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Metais , Água Doce
9.
Environ Int ; 183: 108394, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128385

RESUMO

Heavy metal in soil have been shown to be toxic with high concentrations and acts as selective pressure on both bacterial metal and antibiotic resistance determinants, posing a serious risk to public health. In cadmium (Cd) and zinc (Zn) contaminated soil, chitosan (Chi) and Trichoderma harzianum (Tri) were applied alone and in combination to assist phytoremediation by Amaranthus hypochondriacus L. Prevalence of antibiotic and metal resistance genes (ARGs and MRGs) in the soil was also evaluated using metagenomic approach. Results indicated that the phytoremediation of Cd and Zn contaminated soil was promoted by Chi, and Tri further reinforced this effect, along with the increased availability of Cd and Zn in soil. Meanwhile, combination of Chi and Tri enhanced the prevalence of ARGs (e.g., multidrug and ß-lactam resistance genes) and maintained a high level of MRGs (e.g., chromium, copper) in soil. Soil available Zn and Cd fractions were the main factors contributing to ARGs profile by co-selection, while boosted bacterial hosts (e.g., Mitsuaria, Solirubrobacter, Ramlibacter) contributed to prevalence of most MRGs (e.g., Cd). These findings indicate the potential risk of ARGs and MRGs propagation in phytoremediation of metal contaminated soils assisted by organic and biological agents.


Assuntos
Quitosana , Hypocreales , Metais Pesados , Poluentes do Solo , Cádmio/análise , Zinco/análise , Solo , Antibacterianos , Prevalência , Metais Pesados/análise , Biodegradação Ambiental , Bactérias , Resistência Microbiana a Medicamentos/genética , Poluentes do Solo/análise
10.
Environ Res ; 245: 118065, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159663

RESUMO

BACKGROUND: Some researchers have suggested that zinc (Zn) could reduce the risk of prostate cancer (PC). However, research from observational studies on the relationship between PC risk and biomarkers of Zn exposure shows conflicting results. OBJECTIVES: To evaluate the association between toenail Zn and PC, considering tumour extension and aggressiveness, along with a gene-environment approach, exploring the interaction of individual genetic susceptibility to PC in the relationship between toenail Zn and PC. METHODS: In MCC-Spain study we invited all incident PC cases diagnosed in the study period (2008-2013) and recruited randomly selected general population controls. In this report we included 913 cases and 1198 controls with toenail Zn determined by inductively coupled plasma mass spectrometry. To measure individual genetic susceptibility, we constructed a polygenic risk score based on known PC-related single nucleotide polymorphisms. The association between toenail Zn and PC was explored with mixed logistic and multinomial regression models. RESULTS: Men with higher toenail Zn had higher risk of PC (OR quartile 4 vs.1: 1.41; 95% CI: 1.07-1.85). This association was slightly higher in high-grade PC [(ISUP≤2 Relative risk ratio (RRR) quartile 4 vs.1: 1.36; 1.01-1.83) vs. (ISUP3-5 RRR quartile 4 vs.1: 1.64; 1.06-2.54)] and in advanced tumours [(cT1-cT2a RRR quartile 4 vs.1: 1.40; 95% CI: 1.05-1.89) vs. (cT2b-cT4 RRR quartile 4 vs.1: 1.59; 1.00-2.53)]. Men with lower genetic susceptibility to PC were those at higher risk of PC associated with high toenail Zn (OR quartile 4 vs.1: 2.18; 95% CI: 1.08-4.40). DISCUSSION: High toenail Zn levels were related to a higher risk for PC, especially for more aggressive or advanced tumours. This effect was stronger among men with a lower genetic susceptibility to PC.


Assuntos
Neoplasias da Próstata , Zinco , Masculino , Humanos , Zinco/análise , Estudos de Casos e Controles , Espanha/epidemiologia , Unhas/química , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética , Predisposição Genética para Doença , Compostos Orgânicos , Fatores de Risco
11.
Arch Environ Contam Toxicol ; 86(1): 73-89, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38117305

RESUMO

The mining and smelting site soils in South China present excessive Cd pollution. However, the transport behavior of Cd in the highly weathered acidic soil layer at the lead-zinc smelting site remains unclear. Here, under different conditions of simulated infiltration, the migration behavior of Cd2+ in acid smelting site soils at different depths was examined. The remodeling effect of Cd2+ migration behavior on microbial community structure and the dominant microorganisms in lead-zinc sites soils was analyzed using high-throughput sequencing of 16S rRNA gene amplicons. The results revealed a specific flow rate in the range of 0.3-0.5 mL/min that the convection and dispersion have no obvious effect on Cd2+ migration. The variation of packing porosity could only influence the migration behavior by changing the average pore velocity, but cannot change the adsorption efficiency of soil particles. The Cd has stronger migration capacity under the reactivation of acidic seepage fluid. However, in the alkaline solution, the physical properties of soil, especially pores, intercept the Cd compounds, further affecting their migration capacity. The acid-site soil with high content of SOM, amorphous Fe oxides, crystalline Fe/Mn/Al oxides, goethite, and hematite has stronger ability to adsorb and retain Cd2+. However, higher content of kaolinite in acidic soil will increase the potential migration of Cd2+. Besides, the migration behavior of Cd2+ results in simplified soil microbial communities. Under Cd stress, Cd-tolerant genera (Bacteroides, Sphingomonas, Bradyrhizobium, and Corynebacterium) and bacteria with both acid-Cd tolerance (WCHB 1-84) were distinguished. The Ralstonia showed a high enrichment degree in alkaline Cd2+ infiltration solution (pH 10.0). Compared to the influence of Cd2+ stress, soil pH had a stronger ability to shape the microbial community in the soil during the process of Cd2+ migration.


Assuntos
Microbiota , Poluentes do Solo , Solo/química , Cádmio/toxicidade , RNA Ribossômico 16S , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Zinco/análise , Óxidos
12.
J Hazard Mater ; 464: 132903, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979422

RESUMO

Cadmium (Cd) and antibiotic's tendency to accumulate in edible plant parts and fertile land is a worldwide issue. The combined effect of antibiotics and heavy metals on crops was analyzed, but not mitigation of their toxicity. This study investigated the potential of zinc oxide nanoparticles (ZnO NPs) to alleviate the SDZ and Cd toxicity (alone/combined) to promote spinach growth. Results revealed that the ZnO 200 mg L-1 spray decreased the malondialdehyde (MDA) 14%, hydrogen peroxide (H2O2) 13%, and electrolyte leakage (EL) 7%, and increased the superoxide dismutase (SOD) 8%, peroxidase (POD) 25%, catalase (CAT) 39% and ascorbate peroxidase (APX) 12% in spinach leaves under combined SDZ+Cd (25 mg Kg-1 +50 mg Kg-1) stress compared to ZnO 100 mg L-1 spray. Likewise, ZnO NPs 200 mg L-1 spray enhanced the zinc (Zn) 97%, iron (Fe) 86%, magnesium (Mg) 35%, manganese (Mn) 8%, and potassium (K) 23% in shoots under combined SDZ+Cd (25 mg Kg-1 +50 mg Kg-1) stress compared to ZnO 100 mg L-1 spray. Further, ZnO 200 mg L-1 spray reduced Cd uptake in roots by 9% and shoots 15% under combined SDZ+Cd (25 mg Kg-1 +50 mg Kg-1) stress compared to ZnO 100 mg L-1. Overall, ZnO NPs alleviated the SDZ and Cd toxicity and enhanced spinach growth in all treatments.


Assuntos
Poluentes do Solo , Óxido de Zinco , Zinco/análise , Cádmio/análise , Óxido de Zinco/toxicidade , Spinacia oleracea , Sulfadiazina , Peróxido de Hidrogênio/farmacologia , Superóxido Dismutase , Antioxidantes/farmacologia , Raízes de Plantas , Poluentes do Solo/análise
13.
Molecules ; 28(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067636

RESUMO

Cheese consumption provides humans with minerals, proteins, carbohydrates, and vitamins. In Mexico, several cheese varieties are produced, each with its texture, scent, and flavor. The artisanal cheeses made in the states of Tabasco and Chiapas-including, among others, the varieties named crema (cream), doble crema (double cream), oaxaca, panela, fresco, bola, poro, cotija, and asadero-have a high demand in the domestic and foreign markets. The intensification of anthropic activity in these states causes an increased emission to the environment of contaminants like heavy metals, which could reach human foodstuffs through the food chains. In particular, heavy metal contents in cheeses consumed daily by these states' local populations might represent a public health risk. Because of that, our objectives in this work were to determine the concentrations of lead, cadmium, nickel, copper, zinc, and iron in artisanal cheeses produced in the states of Tabasco and Chiapas and to determine the values of the hazard quotient (HQ), total hazard quotient (THQ), and cancer risk total (CRT) for adult and young men and women. The results of our analyses of cheese samples from the states of Tabasco and Chiapas showed that the average concentrations (mg kg-1) of cadmium (0.0023 ± 0.002, 0.0023 ± 0.002 mg kg-1, respectively, for each state), lead (0.0047 ± 0.00, 0.0051 ± 0.002), nickel (0.0039 ± 0.0046, 0.0031 ± 0.0039), copper (0.0199 ± 0.021, 0.0202 ± 0.022), zinc (0.1611 ± 0.18, 0.194 ± 0.21), and iron (61.84 ± 4.23, 65.76 ± 6.61 mg kg-1), the first three values lower than the limits established by the FAO/WHO and Codex Alimentarius. The value of THQ that we obtained was less than one, and that of CRT was within the limits established by the US-EPA, which means that the consumption of artisanal cheeses from Tabasco and Chiapas by humans does not imply a risk of disease or cancer.


Assuntos
Queijo , Metais Pesados , Neoplasias , Adulto , Feminino , Humanos , Cobre/análise , Níquel , Queijo/análise , Cádmio , Metais Pesados/análise , Zinco/análise , Ferro/análise
14.
J Nutr Health Aging ; 27(11): 1012-1017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37997723

RESUMO

BACKGROUND: Cognitive function has inevitable decline with advancing age in nature, and age-related cognitive decline (ARCD) is of increasing concern to aging population. Scarce study has involved the associations between hair trace elements and ARCD in older adults, especially in centenarians and oldest-old adults. This study was to investigate the associations between hair trace elements and ARCD in centenarians and oldest-old adults. METHODS: Based on the household registration information of centenarians and oldest-old adults provided by the Civil Affairs Department of Hainan Province, China, the investigators conducted a one-to-one household survey among centenarians (≥100 years old) and oldest-old adults (80-99 years old). All 50 centenarians had a median age of 103 years and females accounted for 68.0%. All 73 oldest-old adults aged 80-99 years had a median age of 90 years and females accounted for 82.2%. Basic information were obtained with questionnaire interview, physical examination, biological test and hair collection by pre-trained local doctors and nurses. An inductively coupled plasma mass spectrometer was used to measure hair trace elements. All data in this study comes from China. Age, sex, body mass index, systolic blood pressure, diastolic blood pressure, smoking, drinking, hemoglobin, albumin, fasting blood pressure, zinc, chromium, copper, selenium, iron, manganese, strontium, lead, magnesium, potassium, and barium were simultaneously included in multivariate Logistic regression analysis. One adjusted model was done with all hair trace elements together. RESULTS: Zinc and chromium levels were significantly lower in participants with ARCD than those without ARCD (P < 0.05 for all). Multivariate Logistic regression analysis indicated that zinc [odds ratio (OR): 0.988, 95%confidence interval (95%CI): 0.977-0.999] and chromium (OR: 0.051, 95%CI: 0.004-0.705) were associated with a reduced likelihood of ARCD (P < 0.05 for all). CONCLUSIONS: Hair zinc and chromium levels were associated with a reduced likelihood of ARCD in centenarians and oldest-old adults. Further studies are necessary to verify if zinc and chromium supplementation has the potential to improve cognitive function and prevent ARCD development.


Assuntos
Disfunção Cognitiva , Oligoelementos , Idoso de 80 Anos ou mais , Feminino , Humanos , Idoso , Oligoelementos/análise , Cromo/análise , Centenários , Zinco/análise , Cobre/análise , Disfunção Cognitiva/epidemiologia , Cabelo/química
15.
Ecotoxicol Environ Saf ; 268: 115698, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976927

RESUMO

Humic acids (HA) are a popular soil additive to reduce metal availability, but they have the drawbacks of reduced effectiveness over time and a significant reduction in soil pH. An alkaline humic acid fertilizer (AHAF) combining alkaline additives with HA was developed to overcome such drawbacks. A field experiment was conducted to investigate the effects of different AHAF application rates on the physicochemical properties, bioavailability, accumulation, and translocation of Cd and Zn heavy metals in Sauropus androgynus grown in acidic soil. Based on our results, the 100AF (100% AHAF) treatment significantly increased soil pH, cation exchange capacity (CEC), and organic matter content (OM) after one year of application. Compared with the control treatment (CK), the application of different rates of AHAF resulted in a 37.1-40.3% decrease in soil exchangeable Cd fractions (Exc-Cd) and an increase in the humic acid-bound Cd fractions (HA-Cd) Fe- and Mn-oxide-bound Cd fractions (OX-Cd), and organic matter-bound Cd fractions (OM-Cd) by 9.5-64.6%, 24.8-45.1%, and 158.8-191.2%, respectively (P < 0.05). The different AHAF treatments decreased the Res-Zn, Exc-Zn, and OM-Zn fractions by 69.6-73.0%, 7.4-23.9%, and 18.1-23.2%, respectively (P < 0.05), and increased the HA-Zn fraction by 8.4-28.1%. In the control treatment, the bioconcentration factors (BCFs) for Cd and Zn in different S. androgynus plant organs were in the following order: (Cd) Leaves > Stems > Branches > Roots > Edible branches; (Zn) Roots > Stems > Leaves > Branches > Edible branches. The transfer factors (TFs) of Cd and Zn in S. androgynus were classified as follows: TF2 > TF1 > TF3 > TF4. Thus, S. androgynus stems, and roots had a strong ability to transport Cd and Zn to the leaves. Compared with CK, the 100AF treatment significantly increased the BCFs for Zn in all plant parts (except BCFedible branches). In contrast, it significantly decreased all BCFs and TFs for Cd and the TF4 for Zn, effectively reducing Cd and Zn accumulation in the edible branches of S. androgynus. Soil pH, CEC, OM, and HA-M fraction were highly and significantly negatively correlated with Cd and Zn content in edible branches (P < 0.001). Stepwise multiple linear regression analysis revealed that the soil HA-M fraction was the key contributing factor for Zn accumulation and translocation in S. androgynus. Moreover, based on our findings, the absorption, uptake, and translocation of Cd and Zn were mainly determined by metal speciation and the pH in the soil. Moreover, the competitive antagonistic mechanisms between Zn and Cd absorption also affected their accumulation in S. androgynus. Thus, AHAF can be used as a soil amendment to sustainably improve acidic soils and effectively reduce Cd and Zn accumulation in edible branches of S. androgynus.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Zinco/análise , Solo/química , Substâncias Húmicas/análise , Fertilizantes/análise , Poluentes do Solo/análise , Metais Pesados/análise
16.
J Agric Food Chem ; 71(49): 19856-19865, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38019292

RESUMO

Zinc (Zn) is an essential trace element in the human body, and its deficiency can seriously affect health. Agronomic Zn biofortification with ZnO nanoparticles (ZnO NPs) in consumable wheat prospectively relieves Zn deficiency. We developed an elemental quantitative imaging laser ablation-inductively coupled plasma optical emission spectrometry method to examine the distributions of Zn and other micronutrient elements in wheat grain and the endosperm. After foliar application of ZnO NPs (four rounds), Zn content in the endosperm can be significantly increased (221 ± 61%), and the Zn, Ca, Mg, and P content gradient decreased from the outside seed coat and aleurone layer to the endosperm, whereas the Fe, Mn, K, Cu, Sr, and Ba content gradient decreased from the crease region to the deeper endosperm. This may indicate how different elements enter the endosperm. Foliar application of ZnO NPs did not change the micronutrient accumulation pattern but did change their contents in wheat grain.


Assuntos
Terapia a Laser , Oligoelementos , Óxido de Zinco , Humanos , Óxido de Zinco/química , Endosperma/química , Triticum , Zinco/análise , Oligoelementos/análise , Grão Comestível/química , Análise Espectral
17.
Theor Appl Genet ; 136(10): 217, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37782334

RESUMO

KEY MESSAGE: Major QTL for grain zinc and iron concentrations were identified on the long arm of chromosomes 2D and 6D. Gene-based KASP markers were developed for putative candidate genes TaIPK1-2D and TaNAS10-6D. Micronutrient malnutrition is one of the most common public health problems in the world. Biofortification, the most attractive and sustainable solution to surmount malnutrition requires the development of micronutrient enriched new crop cultivars. In this study, two recombinant inbred line (RIL) populations, ZM175/XY60 and ZM175/LX987, were used to identify QTL for grain zinc concentration (GZnC), grain iron concentration (GFeC) and thousand grain weight (TGW). Eight QTL for GZnC, six QTL for GFeC and five QTL for TGW were detected. Three QTL on chromosomes 2DL and 4BS and chromosome 6A showed pleiotropic effects on all three traits. The 4BS and 6A QTL also increased plant height and might be Rht-B1a and Rht25a, respectively. The 2DL locus within a suppressed recombination region was identified in both RIL populations and the favorable allele simultaneously increasing GZnC, GFeC and TGW was contributed by XY60 and LX987. A QTL on chromosome 6DL associated only with GZnC was detected in ZM175/XY60 and was validated in JD8/AK58 RILs using kompetitive allele-specific PCR (KASP) marker K_AX-110119937. Both the 2DL and 6DL QTL were new loci for GZnC. Based on gene annotations, sequence variations and expression profiles, the phytic acid biosynthesis gene TaIPK1-2D and nicotianamine synthase gene TaNAS10-6D were predicted as candidate genes. Their gene-based KASP markers were developed and validated in a cultivar panel of 343 wheat accessions. This study investigated the genetic basis of GZnC and GFeC and provided valuable candidate genes and markers for breeding Zn- and Fe-enriched wheat.


Assuntos
Genes de Plantas , Ferro , Triticum , Zinco , Grão Comestível/química , Grão Comestível/genética , Genes de Plantas/genética , Ferro/análise , Desnutrição/dietoterapia , Micronutrientes/análise , Melhoramento Vegetal , Oligoelementos/análise , Triticum/química , Triticum/genética , Zinco/análise , Humanos
18.
Sci Total Environ ; 905: 167216, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734600

RESUMO

Phytoextraction with Sedum plumbizincicola is an in-situ, environmentally friendly and highly efficient remediation technique for slightly Cd-polluted soils but it remains a challenge to remediate highly Cd-polluted soils under field conditions. Here, an 8-ha field experiment was conducted to evaluate the feasibility of repeated phytoextraction by S. plumbizincicola of a highly Cd-polluted acid agricultural soil (pH 5.61, [Cd] 2.58 mg kg-1) in Yunnan province, southwest China. Mean shoot dry biomass production, Cd concentration and Cd uptake were 1.95 t ha-1, 170 mg kg-1 and 339 g ha-1 at the first harvest, and 0.91 t ha-1, 172 mg kg-1 and 142 g ha-1 at the second harvest. After two seasons of phytoextraction, soil total and CaCl2-extractable Cd concentrations decreased from 2.58 ± 0.69 to 1.53 ± 0.43 mg kg-1 and 0.22 ± 0.12 to 0.14 ± 0.07 mg kg-1, respectively. Stepwise multiple linear regression analysis shows that the shoot Cd concentration and uptake of S. plumbizincicola were positively related to soil CaCl2-extractable Cd concentrations, especially in the first crop. A negative relationship indicates that soil organic matter content played an important role in soil Cd availability and shoot Cd concentration in the first crop. In addition, the rhizosphere effect on soil CaCl2-extractable Cd concentration was negatively correlated with soil pH in the first crop. The accuracy of the calculation of soil Cd phytoextraction efficiency at field scale depends on all of the following factors being considered: shoot Cd uptake, cropping pattern, standardized sampling points, and the leaching and surface runoff of Cd. Phytoextraction with S. plumbizincicola is a feasible technique for efficient Cd removal from highly polluted soils and wide variation in soil properties can influence phytoextraction efficiency at the field scale.


Assuntos
Sedum , Poluentes do Solo , Cádmio/análise , Zinco/análise , Sedum/química , Cloreto de Cálcio , Poluentes do Solo/análise , Biodegradação Ambiental , China , Solo/química
19.
Environ Res ; 236(Pt 2): 116817, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541416

RESUMO

Natural and anthropogenic environmental impacts can introduce contaminants into sensitive habitats, threatening ecosystems and human health. Consistent monitoring of coastal areas provides critical environmental assessment data. Sediments and Eastern Oyster (Crassostrea virginica) tissues were collected at fourteen South Carolina (SC) and four North Carolina (NC) sites as part of the National Oceanic and Atmospheric Administration's Mussel Watch environmental monitoring program. Cellular and molecular techniques were employed to measure C. virginica stress response, specifically, Lipid Peroxidation (LPx), Glutathione (GSH), and qPCR techniques. Gene specific primers targeted for detecting oxidative stress and cellular death were developed in C. virginica to gauge response to current environmental conditions using gill and hepatopancreas (HP) tissue. In order to validate gene specific markers as additional assessment tools, a 96 h zinc (Zn) laboratory exposure was performed. Cellular biomarker data revealed tissue specific responses. Hepatopancreas data showed C. virginica exhibited stress through the lipid peroxidation assay amongst sampling sites, however, response was managed through glutathione detoxification. Gill tissue data had significantly lower levels of cellular biomarker response compared to hepatopancreas. Molecular biomarkers targeting these cellular stress pathways through qPCR analysis show upregulation of Metallothionein in hepatopancreas and gill tissue with a concurrent > 2-fold upregulation in the detoxification marker Superoxide Dismutase (SOD) at three NC sites. SC sites displayed higher stress levels through LPx assays and down-regulation in GPx gene activity. Laboratory zinc exposure revealed no significance in cellular biomarker results, however, molecular data showed gills responding to zinc treatment through upregulation of Metallothionein, SOD and Cathepsin L, indicating an acute response in gills. Collectively, chemical, cellular and molecular methods clarify sentinel stress response of biological impacts and aid in evaluating environmental health in coastal ecosystems. This combined methodological approach provides a detailed analysis of environmental conditions and improves land-use management decisions.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Humanos , South Carolina , Ecossistema , Crassostrea/genética , Crassostrea/metabolismo , North Carolina , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Biomarcadores/metabolismo , Zinco/análise , Metalotioneína , Poluentes Químicos da Água/análise , Brânquias/metabolismo
20.
J Occup Environ Hyg ; 20(11): 536-544, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37578775

RESUMO

Welding fume is a common exposure in occupational settings. Gravimetric analysis for total particulate matter is common; however, the cost of laboratory analyses limits the availability of quantitative exposure assessment for welding fume metal constituents in occupational settings. We investigated whether a field portable X-ray fluorescence spectrometer (FP-XRF) could provide accurate estimates of personal exposures to metals common in welding fume (chromium, copper, manganese, nickel, vanadium, and zinc). The FP-XRF requires less training and is easier to deploy in many settings than traditional wet laboratory analyses. Filters were analyzed both by FP-XRF and inductively coupled plasma mass spectrometry (ICP-MS). We estimated the FP-XRF limit of detection for each metal and developed a correction factor accounting for the non-uniform deposition pattern on filter samples collected with an Institute of Medicine (IOM) inhalable particulate matter sampler. Strong linear correlation was observed for all metals (0.72

Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/análise , Aço Inoxidável/análise , Cobre/análise , Manganês/análise , Níquel/análise , Raios X , Vanádio/análise , Monitoramento Ambiental/métodos , Cromo/análise , Zinco/análise , Espectrometria por Raios X/métodos , Gases/análise , Espectrometria de Massas/métodos , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA